Trajectory generation and modulation using dynamic neural networks

نویسندگان

  • Pablo Zegers
  • Malur K. Sundareshan
چکیده

Generation of desired trajectory behavior using neural networks involves a particularly challenging spatio-temporal learning problem. This paper introduces a novel solution, i.e., designing a dynamic system whose terminal behavior emulates a prespecified spatio-temporal pattern independently of its initial conditions. The proposed solution uses a dynamic neural network (DNN), a hybrid architecture that employs a recurrent neural network (RNN) in cascade with a nonrecurrent neural network (NRNN). The RNN generates a simple limit cycle, which the NRNN reshapes into the desired trajectory. This architecture is simple to train. A systematic synthesis procedure based on the design of relay control systems is developed for configuring an RNN that can produce a limit cycle of elementary complexity. It is further shown that a cascade arrangement of this RNN and an appropriately trained NRNN can emulate any desired trajectory behavior irrespective of its complexity. An interesting solution to the trajectory modulation problem, i.e., online modulation of the generated trajectories using external inputs, is also presented. Results of several experiments are included to demonstrate the capabilities and performance of the DNN in handling trajectory generation and modulation problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Fuel Cell Voltage Control for Load Variations Using Neural Networks

In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...

متن کامل

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2003